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Overview 
• Introduction. 

• Solution model – Our solubility prediction 
model. 

• Results – The performance of the solubility 
predictions. 

• Further models – Work following on from the 
initial model. 

• Current/future work – Where we are currently 
and where we are going. 
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Why is solubility prediction important? 

• Crucial factor to control 
bioavailability of drug 
candidates. 

• Critical component in 
determining the 
environmental impact 
of pesticides. 

•  Accurate in silico 
predictions of solubility 
can save time and 
money. 
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• New drug candidates  
are often more 
insoluble than their 
predecessors. 

• Formulation of these 
drugs often involve less 
pleasant administration 
methods.   

4 

Introduction Solution model Results   Further models  Current/future work 

Why should we care about solubility ? 

• Certain pesticides can cause   
extensive damage and potentially   
enter the water cycle. 
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Existing Theoretical Approaches 

• So far, although theoretical methods have shown 
promise, they have not matched the accuracy of 
QSPR. Theoretical methods do have the advantage of 
being physically tractable.  

• Industry also requires high through put methods. 
QSPR models are generally much faster than 
computational chemistry models. 

• There are many theoretical models to make solubility 
predictions. 
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Our Methodologies 

• We have decomposed the solution (solu) free 
energy prediction in to two distinct steps.  

– Sublimation (sub) 

– Hydration (hyd) 

• We have applied a range of methodologies to 
each step.  

• Methodologies include simulation, QM 
calculation and machine learning. 
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Thermodynamic cycle 
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ΔG*hyd 

ΔGsolu 

Crystalline 

Gaseous 

Solution 

ΔG*sub 

1 atm 

+1.89 kcal/mol 

ΔGᵒsub ΔGᵒhyd 

1 mol/L 
Sub = sublimation 
Hyd = hydration 
Solu = solution 
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Sublimation : Predictions by DMACRYS 
• DMACRYS a periodic lattice 

simulation program. 

• Electrostatics, from distributed 
multipoles. 

• Buckingham potential to 
account for repulsion and 
dispersion. 

• Calculates lattice energy and 
crystal entropy from phonon 
modes. 

• Gas phase contributions 
calculated in Gaussian 09. 
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ΔG sub 

Solid  

Gaseous  
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Hydration: Solvation models 

• Continuum solvent, solvation 
model based on density 
(SMD). 

• An integral equation theory 
(IET) of molecular liquids 
methodology the Reference 
Interaction Site Model (RISM). 
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ΔG hyd 

Dilute solution  

Gaseous 

Introduction Solution model Results   Further models  Current/future work 



Hydration: RISM 
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• Combines features of explicit and implicit solvent models. 

• Solvent density is modelled, but no explicit molecular 
coordinates or dynamics. 

~45 CPU mins per compound 
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Hydration: RISM 
• We use the 3D RISM variation.  

• We employ the Kovalenko-Hirata 
(KH) closure and Gaussian 
fluctuation free energy functional.  

• We also employ the universal 
correction (UC). 

∆𝐺ℎ𝑦𝑑
3𝐷𝑅𝐼𝑆𝑀−𝐾𝐻/𝑈𝐶

= ∆𝐺ℎ𝑦𝑑
3𝐷𝑅𝐼𝑆𝑀 + 𝑎 𝜌𝑉 + 𝑏         

• The methodology we used will be 
referred to as 3DRISM-KH/UC. 
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David, S. Palmer., Andrey I Frolov, Ekaterina L Ratkova and Maxim V Fedorov,. Journal of Physics: Condensed Matter 2010, 22 (49), 492101. 
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Solution Free Energy 
• The sum of our predictions 

of ΔG sub and ΔG hyd produce 
a  ΔG solu prediction.  

• These methods were carried 
out for 25 chemically diverse 
drug-like molecules. 

• Chemical accuracy               
~4 kJ/mol or ~ 1 LogS unit. 

• Useful predictions are within 
the standard deviation (SD) 
of the experimental values.  
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ΔG solu 

ΔG hyd ΔG sub 
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Data set selection 
 

• The thermodynamically 
most stable polymorph 
was selected 

• 10 had available 
experimental sublimation 
and hydration  free 
energies. (in red). 
 
 

Allopurinol 
ALOPUR 

4-Aminobenzoic acid 
AMBNAC04 

Trimethoprim 
AMXBPM10 

Benzoic acid 
BENZAC02 

Benzamide 
BZAMID02 

Cocaine 
COCAIN10 

Naproxen 
COYRUD11 Danthron 

DAHNQU06 

Primidone 
EPHPMO 

Estrone 
ESTRON14 

Acetaminophen 
HXACAN04 

Ibuprofen 
IBPRAC01 

Fluconazole 
IVUQOF 

Isoproturon 
JODTUR01 

Nitrofurantoin 
LABJON01 

1-Naphthol 
NAPHOL01 Clozapine 

NDNHCL01 

Nicotinic acid 
NICOAC02 

Niflumic acid 
NIFLUM10 

Pindolol 
PINDOL 

Pteridine 
PTERID11 

Pyrene 
PYRENE07 

Salicylic acid 
SALIAC 

Diclofenac 
SIKLIH01 

Mefenamic acid 
XYANAC 



Sublimation free energy predictions 

• Validation of the 
sublimation free energy 
prediction.  

• B3LYP/6-31G(d,p) 
multipole. 

• FIT repulsion dispersion 
potential. 

• Correlation coefficient (R) 
0.87. 

• RMSE 5.66kJ/mol. 
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Hydration Free Energy Predictions 

• Validation of the hydration free 
energy predictions.  

• SMD HF/6-31G(d,p). 

• Both have strong R values    
0.93 RISM, 0.97 SMD. 

• RISM has a significantly higher 
RMSE 4.85kJ/mol RISM, 
2.91kJ/mol SMD. 
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3DRISM-KH/UC 

SMD (HF) 
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Solution Free Energy Predictions 
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• The full 25 molecule set is 
compared to experiment. 

• Chemical accuracy ~ 1logS unit. 
Experimental SD 1.79 LogS. 

• Reasonable correlation                   
R 0.85 RISM, R 0.84 SMD. 

• RISM method provides best RMSE,         
RMSE of 1.45LogS RISM,          
RMSE of 2.03LogS SMD. 

• SMD outliers Niflumic Acid and  
Pteridine. 

Palmer, D. S.; McDonagh, J. L.; Mitchell, J. B. O.; van Mourik, T.; Fedorov, M. V., Journal of 
Chemical Theory and Computation 2012. 
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DMACRYS + 
3DRISM-KH/UC 

DMACRYS+ 
SMD (HF) 



To sum up 

• From these results we concluded it was 
possible to make predictions of a reasonable 
accuracy. 

• In our methodology a larger portion of error 
could be attributed to the sublimation free 
energy prediction. 

• Larger datasets were required to fully validate 
the methodology. 
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Further models  

• We took two approaches to follow up this 
work: 

– Parameterisation and machine learning 
approaches to predict ΔG solution. 

– Systematic theoretical improvements in 
Sublimation free energy predictions. (work 
currently ongoing). 
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Informatics and machine learning 

• We selected a dataset of 100 
molecules. 

• Calculated descriptors using 
the chemistry development 
kit (CDK). 

• We followed our previously 
laid out theoretical 
methodology for the 100 
molecules. 

• We combined descriptors 
and theoretically calculated 
energies.  
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Descriptors  

• SMILES are input into 
CDK. 

• Structural and some 
predicted properties are 
output for use as 
descriptors. 

• These cheminformatics 
descriptors were used 
as part of the input for 
the machine learning 
methods. 

 

 

 

 

 

CC(=O)Oc1ccccc1C(=O)O 
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Descriptor Value 

Molecular Weight  280 

Molecular Formula C9H8O4 
XLogP 1.24 

Freely rotatable bonds  3 
H bond acceptor 4 

….. ….. 

…… …… 



Computational Chemistry Calculations 
• DMACRYS –B3LYP/            

6-31G(d,p), FIT potential. 

• SMD with                    
HF/6-31G(d,p)  

• The same level of theory 
was  used in the gas 
phase as the solution 
phase. 

• SMD selected over RISM 
as it provided a better 
correlation in the 
previous work. 
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Machine Learning Models 

• Random Forest (RF) – A forest of decision trees. 
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• Support Vector Machines (SVM) – Classification by 
projection into a higher space and separation by a 
hyperplane.   
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• Partial least squares Regression (PLS) – can be 
considered as classification by deflation. 
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𝑦 = 𝑋𝑏 + 𝜖𝑡 
 

1 0.5 5
1 0.7 7
1 0.9 9

50
70
2

 



Work flow/Experimental design  

RF 

SVM 

PLS 
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Prepare and 
input 

Descriptors and 
Theoretically 

calculated 
energies  

Internal cross 
validation 

Internal cross 
validation 

Internal cross 
validation 

External 10 
fold cross 
validation  



Results 

• Results of the purely 
theoretical prediction. 

• Our results are 
correlative. 

• Standard linear 
regression is a poor 
fitting model. 

• Chemical accuracy 
~1logS unit. 

• Experimental SD 1.71 
LogS units.  
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R = 0.57 
R² = 0.32 

RMSE = 2.95 
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Descriptors only 
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• Results of prediction 
exclusively using the CDK 
descriptors. 

• All machine learning methods 
perform better than theory 
alone. 

• Red bars show the SD and 
mean result. 

• Boxes represent 75% of the 
predictions. Dark blue line 
shows the median. 

   PLS RF SVM Theory 
Mean  
RMSE 1.174(±0.08) 1.134(±0.03) 1.132(±0.03) 2.95 

Mean R2 0.56(±0.03) 0.56(±0.03) 0.56(±0.03) 0.32 

Descriptors only RMSE 

Descriptors only R2 

R
M

SE
 

R
2

 

         PLS                     RF                    SVM 

         PLS                     RF                    SVM 

Predictive model 

Predictive model 



Combined model 
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• The model contains 
HF/6-31G(d,p) energies 
and descriptors. 

• All show improvement 
over pure theory. 

• Result are similar to 
those of the descriptors 
alone. 

• Experimental SD 1.71 
LogS units. 

 
 
 
 

  PLS RF SVM Theory 
Average 
RMSE 1.110(± 0.04) 1.107(±0.03) 1.111(±0.04) 2.95 

Average R2 0.594(±0.04) 0.583(±0.04) 0.576(±0.04) 0.32 
Combined model R2 

Combined model RMSE 

R
M

SE
 

R
2

 

         PLS                     RF                    SVM 

         PLS                     RF                    SVM 

Predictive model 

Predictive model 



Summary 

• The information from theoretical calculations 
at this level has a minor impact but does 
improve accuracy and correlation of the 
results. 

• The descriptors already hold much of the 
information. 

• Further exploration of models of this type 
could allow us to find information not held in 
the descriptors that is accessible by chemical 
calculation. 
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Exploration of sublimation free energy 
prediction 

• The largest source of error in the initial 
method was the sublimation free energy 
prediction. 

• We have a dataset of 60 molecules. 

• We made sublimation free energy predictions 
using this dataset with our previously outlined 
method. 

• We look to DFT methods to provide improved 
predictions. 

30 

Introduction Solution model Results   Further models  Current/future work 



Periodic DFT 

• We are using Periodic 
DFT to make 
sublimation free energy 
predictions. 

• We are exploring 
dispersion corrections. 

• We will look at the 
accuracy of prediction 
of the components of 
the free energy. 
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Free Energy of Sublimation 

• From our initial 
methodology. 

• A poor correlation.  

• Significant RMSE. 

• Outliers hold significant 
leverage. 

• All outliers contain NO2 
groups (in red) which 
are known to be 
difficult to represent 
accurately in force 
fields.  
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R² = 0.39 
RMSE 16.6 
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Summary  

• We have explored a purely theoretical  
methodology for predictions of solvation free 
energy.  

• We have expanded from this to produce a 
combined computational chemistry -  
cheminformatics methodology. 

• We have begun exploration of sublimation 
free energy, due to the large error it 
contributed in our original methodology. 
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Current Preliminary Results 

Enthalpy of Sublimation 

• Using DMACRYS – 
B3LYP multipoles FIT 
potential and Gaussian 
09.  

•  48 molecules. 

• A fair correlation but 
significant RMSE. 
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R² = 0.5613 
RMSE 15.20 
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Entropy of Sublimation 

• Crystal entropy 
calculated in DMACRYS, 
gas phase in Gaussian 
09. 

• No meaningful 
correlation. 

• Significant RMSE. 

• 48 molecules 
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R² = 0.0412 
RMSE 13.55 
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Additional notes 

• Buckingham potential 
 
• Universal correction 
          ∆𝐺ℎ𝑦𝑑

3𝐷𝑅𝐼𝑆𝑀−𝑈𝐶 = 

∆𝐺ℎ𝑦𝑑
3𝐷𝑅𝐼𝑆𝑀 + 𝑎 𝜌𝑉 + 𝑏 

•  LogS 
ΔGsol
−𝑅𝑇

ln (10)
=log(S) 

ΔGsolu = −𝑅𝑇𝑙𝑛𝑆 
• 1logS unit = 5.71 in terms of 

ΔG 
 

• Thermodynamics  
• ΔHsub = -Ulatt +2RT 
• ΔSsub  = (Sr+St) – Scrys 

• ΔGsub = ΔHsub  - TΔSsub 

• ΔGhyd = Esol – Egas 

• ΔGsolu = ΔGsub + ΔGhyd 
• ∆𝐺𝐺𝐹 =

𝐾𝐵𝑇 𝜌𝛼  𝑐𝛼 𝑟 −
1

2
𝑐𝛼 𝑟 ℎ𝛼 𝑟 𝑑𝑟

𝑅3
𝑁𝑠𝑜𝑙𝑣𝑒𝑛𝑡
𝛼=1  
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𝐸𝑙𝑘 = 𝐵𝑒𝑥𝑝 −𝐶𝑟𝑙𝑘 − 𝐴𝑟𝑙𝑘
−6       

 
  

∆𝐺𝑠𝑜𝑙
𝑜 = ∆𝐺𝑠𝑢𝑏

𝑜 + ∆𝐺ℎ𝑦𝑑
𝑜 = −𝑅𝑇𝑙𝑛(𝑆0𝑣𝑚) 

Molar volume of the crystal Vm 
Intrinsic solubility So 
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