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 R is the gas constant, T is the temperature, Vm  is the molar volume of the crystal and So is the intrinsic 

solubility. 
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Introduction Methods 

 Poor aqueous solubility remains a major cause of attrition in the drug 

development process.  

 In previous work, energy terms from a computed thermodynamic cycle had 

been used as descriptors in a multi-linear regression model for intrinsic 

solubility. Accuracy much better than from direct computation and comparable 

to leading informatics approaches was achieved. 

 In recent work, we have shown that accurate first principles calculation is now 

becoming possible – provided that both the crystalline and solution phases are 

described by accurate theoretical models.[1]  

 Sophisticated machine learning techniques have been applied to many problems 

in the chemical sciences. 

 The free energy terms are partitioned into physically meaningful terms. The 

relevant solute – solute, solute – solvent and solvent – solvent enthalpy      

and entropy terms are computed. 

 DMACRYS is used to calculate the crystal lattice energies. Gaussian 09 (G09) 

is used to calculate the gaseous and solution phase energies.  

 The SMD solvation model was used; gas and solution phases were calculated at 

the HF/6-31G(d,p) and M062X/6-31G(d,p) levels of theory.[1]  

 To  understand the quantitative results, we have performed machine leaning 

methods such as:  

 Partial Least Square Regression (PLS): 𝑌=𝑋𝐵+ 𝜀   where 𝐵= [(𝑋𝑇 𝑋)](−1) 𝑋𝑇 𝑌 

 Random Forest Regression (RF): ensemble of  many decision trees. 

 Support Vector Regression (SVR): 𝑓 𝑥, 𝜔 =   𝜔𝑗𝑔𝑖 𝑥 + 𝑏𝑚
𝑗=1   

 Radial SVR: 𝑒 (−𝛾 |𝑥 − 𝑦|2)  

R = 0.57 

R Squared = 0.327 

RMSE = 2.946 
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Results and Discussion 

 We have used 100 drug-like molecules for this study. Where possible, 

SMILES were taken from a single source (ChemSpider) due to the 

variability in the interpretation of non-canonical SMILES strings. 

  

 The descriptors were calculated from SMILES strings in the Chemistry 

Development Kit (CDK). These descriptors include  Molecular Weight, 

XLogP, Freely rotatable bonds, number of H-bond acceptors etc. 

 

 Figure 1: represents the correlation between the HF/6-31G(d,p) theoretical 

calculation, which outperformed the M062X/6-31G(d,p) calculation, and 

the experimental LogS values.  

 

 Table 1 summarises the results of a linear regression analysis of the 

theoretical  prediction  against  the experimental results.  

 

 Our initial results, a linear regression analysis, suggested an error of 

almost 3 LogS units, too large for a useful model. 

 

 

 

Figure 1 

RMSE 

M062X & 

Descriptors 

HF & 

Descriptors 

Descriptors 

Only 

PLS 1.093 1.110 1.174 

RF 1.086 1.107 1.134 

SVR 1.119 1.111 1.132 

 

 For further analysis aimed at improving the accuracy, and to evaluate 

different descriptor sets, we used various machine learning 

approaches and compared the performance of such methods. 

 

 Figure 2: boxplots represent the distribution of RMSE of various 

machine learning methods using 10 fold CV for different sets of 

descriptor. Here, the red dot represents the average performance 

(RMSE) of different models. 

 

 Table 2 (A and B): reports the average over 10 fold CV of RMSE 

and R squared scores of different models and descriptor sets. These 

results suggest that RF performed slightly better than other 

predictive models when fitted with all sets of descriptors.  
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R Squared 

M062X & 

Descriptors 

HF & 

Descriptors 

Descriptors 

Only 

PLS 0.595 0.594 0.559 

RF 0.602 0.583 0.559 

SVR 0.575 0.576 0.559 
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Figure 2 

M062X and Descriptors Only 

 Overall, machine learning 

methods significantly 

improved upon the linear 

relationship, suggesting that 

the theoretically calculated 

data could be explained by 

non-linear QSPR models. 

 

 Our results also suggest that 

the prediction is significantly  

improved if theoretical 

energies are combined with 

cheminformatics descriptors. 

 

 Machine learning based 

solely on computed energy 

terms and a study of variable 

importance are ongoing.    

Cheminformatics  

Theoretical energies  

Data (Pre-processed) 

RMSE  & 

R squared 

Machine Learning Methods 

    Optimising the 

parameters for different 

predictive models. 

 
1. PLS: principal components: 

B. 

2. RF: mtry and ntree. 

3. SVR Radial: C and 𝛾 . 

 

10 Fold CV  

Informatics Section 

Table 2(A) 

Table 2(B) 

Theoretical  

Methods 

DMACRYS + 

SMD M062X  

DMACRYS + 

SMD HF  

RMSE 4.045 2.946 

R Squared 0.252 0.327 

Table 1 


